A gravitational wave

"It was just at the beginning of this run, when we were all ready to go, to press the button to start the observing run, that the gravitational wave was observed," he said.3-billion-year-old ripple in the fabric of space-time. He just took a deep breath. The detector in Hanford, Washington picked up the signal 7. "The travel time of light between the two instruments is 10 milliseconds," said Shoemaker."After many tests, the LIGO team’s discovery was confirmed."The LIGO work is vastly different from that done by US astrophysicists who announced in 2014 they had detected the first ripples from the Big Bang, then months later admitted their indirect, telescope-based findings were premature and could not be confirmed."And if the two signals had arrived 11 milliseconds apart, we would have simply said, ‘Nope. "So it was a very exciting moment for us and it took us perfectly by surprise. An instant message had arrived from a close colleague in Germany. One by one, they ruled out electromagnetic storms, lighting strikes, earthquakes, or interference by people near sensitive parts of the instruments.— APThe wave that made history snuck up on them."
The message said: "I think we are in trouble now," he recalled.1 milliseconds after the Livingston, Louisiana instrument, some 1,800 miles away. Further-more, the timing matched up.’"But it happened within 7. "I was sitting at home, with a cup of coffee in my hand and opening up my email at around 7 am," he told AFP. "It is seared in my brain," said Shoemaker, a top scientist at the Massachusetts Institute of Technology and head of the Advanced LIGO Project, an international effort to uncover evidence of gravitational waves. But Shoemaker, a leading scientist in the search for gravitational waves since the early 1980s, did not leap out his chair or shout expletives. "But, you know, eventually, joy sets in. David Shoemaker will never forget the date — September 14, 2015 — when he woke up to a message alerting him that an underground detector had spotted a 1. The "chirp," as Shoemaker described the long-awaited wave, had arrived while he was asleep."This is the first time there has ever been a direct detection of the gravitational waveform," Shoemaker said.1 milliseconds, which is a perfectly plausible delay between the two. "It took weeks before we were really gaining confidence that it was a true gravitational wave event, before I could admit to myself that something had been seen," Shoemaker said.Hebrew University’s Roni Gross in Jerusalem on Thursday holds the original historical documents related to Albert Einstein’s prediction of the existence of gravitational waves. "My immediate reaction was, ‘That’s fascinating.’" In fact, the team had only just turned on the pair of underground detectors, one in Louisiana and one in Washington state, for a series of final checks before formally starting the observation experiment, which would run from mid September until January. Let’s see what the instruments did wrong.
It’s two instrumental defects that happened at the same time. "When the signal finally got to the Earth on September 14 we knew within three minutes that our instruments had seen something really different," said Shoemaker. Such waves are a measure of strain in space, an effect of the motion of large masses that stretches the fabric of space-time, a way of viewing space and time as a single, interweaved continuum. "And that makes it a magical thing. But since the data analysis works in quasi-real-time, scientists watching the data stream early in the work day in Europe saw it immediately." Immediately, Shoemaker and colleagues began running through a checklist of possible failures.A gravitational wave, predicted to heat transfer printing fabric exist a century ago by Albert Einstein, had been glimpsed directly for the first time by a pair of US-based detectors. In other words, the kinds of gravitational waves that happen all the time, but had never before been observed.Shoemaker and colleagues are using different equipment to hunt for much smaller, shorter waves, on the order of milliseconds or seconds. Two black holes spiralling into each other became a single black hole, and the joining of these two giants curved the fabric of space-time around them, ever so briefly.
Posted in Default Category on September 16 at 10:18 AM

Comments (0)

No login